Flat Earth vs Real Ballistics Science
- russell2765
- Jul 13
- 3 min read

đ How the Coriolis Effect Impacts Long-Range Shooting: Horizontal & Vertical Bullet Deflection Explained
Release Date: July 15, 2025
âI donât believe in Coriolisâitâs just a theory." Tell that to your bullet at 1,500 yards.
In the world of long-range precision shooting, the Coriolis effect isnât pseudoscienceâitâs a documented and measurable shift in your bulletâs point of impact due to Earth's rotation. ELR (Extreme Long Range) shooters, military marksmen, and ballistics engineers have modeled it for decades because once you reach mile-range distances, ignoring Coriolis isnât an optionâitâs a guaranteed miss.
đ§ What Is the Coriolis Effect?
The Coriolis effect is an apparent force that arises when observing motion from a rotating coordinate systemâlike Earth. While itâs not a force in the Newtonian sense, it impacts trajectories of moving objects in a rotating frame.
When a bullet is fired:
It retains the inertial momentum of its launch point.
The Earth rotates beneath it during its flight.
This causes a deflection in the bulletâs path, depending on your latitude and direction of fire.
There are two components to consider:
Horizontal Drift (Classic Coriolis)
Vertical Shift (Eötvös Effect)
đ Direction Matters: Horizontal vs. Vertical Deflection
†Shooting North or South â Horizontal Deflection
Due to Earth's eastward rotation:
In the Northern Hemisphere, bullets deflect right
In the Southern Hemisphere, bullets deflect left
This occurs because the target location is rotating at a different eastward velocity than the launch pointâresulting in lateral drift across the trajectory.
†Shooting East or West â Vertical Deflection
This is the Eötvös effectâa change in centrifugal force based on shooting direction:
Shooting East: Bullet experiences less net gravity â hits high
Shooting West: Bullet experiences more net gravity â hits low
The vertical shift arises from variation in Earth's centrifugal acceleration and becomes more pronounced at the equator and higher velocities.
đą Horizontal Coriolis Drift Formula
Lateral Deflection = 2 Ă V Ă Ï Ă sin(Latitude) Ă T
Where:
VÂ = Bullet velocity (m/s)
Ï = Earthâs angular velocity â 7.292 Ă 10â»â” radians/sec
Latitude = Shooterâs latitude (degrees)
TÂ = Bullet time of flight (seconds)
This calculates sideways drift in meters. Multiply by 39.37 to convert to inches. For MILs at 1,000 yards, 1 MIL â 36 inches.
đą Vertical Deflection (Eötvös Effect) Formula
Vertical Shift = V Ă Ï Ă cos(Latitude) Ă T
Where:
VÂ = Bullet velocity (m/s)
Ï = Earthâs angular velocity â 7.292 Ă 10â»â” radians/sec
Latitude = Shooterâs latitude (degrees)
TÂ = Bullet time of flight (seconds)
This gives upward or downward shift when firing east or west.
đŻ Real Example: .338 Lapua at 45° N Latitude
Caliber:Â 285gr .338 Lapua Magnum
Velocity:Â 850 m/s ~ 2800 fps
Latitude: 45° N
Time of Flight:Â ~2.5 seconds
Direction:Â Due North
†Horizontal Deflection:
= 2 Ă 850 Ă 0.00007292 Ă sin(45°) Ă 2.5â 0.175 meters = 6.9 inches right. Thatâs about 0.15 MILSâa full chest-width at this distance.
†Vertical Deflection (if shooting East):
= 850 Ă 0.00007292 Ă cos(45°) Ă 2â 0.087 meters = 3.4 inches high
So not only does your bullet slide sideways, but it may also rise or fall depending on directionâcritical info in ELR discipline.
đ ïž How to Account for Both in ELR Shooting
Use modern ballistic solvers:
Kestrel, Hornady 4DOF, or Applied Ballistics
Input:
Latitude
Firing direction
Bullet velocity
Atmospheric data
These solvers adjust for both horizontal drift and vertical shift automatically. For shots over 1,200 yards, verifying azimuth input and time-of-flight accuracy is essential.
đ« Flat Earth Commentary
The Coriolis effect doesnât care about ideology. Itâs been:
Modeled by artillery teams since WWI
Accounted for in naval targeting systems
Validated through Doppler radar and satellite tracking
Integrated into aircraft navigation software
If youâre not adjusting for it in ELR, youâre not shooting preciselyâyouâre rolling dice.
â Final Takeaway
< 1,000 yards? Coriolis deflection is minimal.
Beyond 1,500 yards? Itâs measurable.
ELR shooting? Itâs mandatory.
Train smarter by understanding how Earthâs rotation affects your trajectoryânot just horizontally, but vertically. Precision demands physics. Flat Earth debates belong on YouTube. Your bullet obeys math.
Comments